PILOT LEARNING
 CALCULUS II ENGINEERING PROBLEM-SET 3
 FALL 2019

(1) Check that the differential equation $y^{\prime}+2 y=2 e^{x}$ is satisfied by the function $y=$ $\frac{2}{3} e^{x}+e^{-2 x}$.
(2) Consider the differential equation $y^{\prime}=x+y^{2}$.
(a) Sketch the direction field of the differential equation.
(b) Then use it to sketch a solution curve that passes through the point $(0,0)$.
(3) (a) Verify that all members of the family $y=\left(c-x^{2}\right)^{-1 / 2}$ are solutions of the differential equation $y^{\prime}=x y^{3}$.
(b) What can you say about the graph of a solution of the equation $y^{\prime}=x y^{3}$ when x is close to 0 ? When x is large?
(c) Find a solution to the initial value problem (IVP)

$$
y^{\prime}=x y^{3} \quad ; \quad y(0)=2
$$

(4) Psychologists interested in learning theory study learning curves. A learning curve is the graph of a function $P(t)$, the performance of someone learning a skill as a function of the training time t . The derivative $\mathrm{dP} / \mathrm{dt}$ represents the rate at which performance improves.
(a) Based on your own learning experience, sketch what you think a typical learning curve looks like.
(i) When do you think P increases most rapidly?
(ii) What happens to $\mathrm{dP} / \mathrm{dt}$ as t increases?
(iii) Explain your graph.
(b) If M is the maximum level of performance of which the learner is capable, explain why the differential equation

$$
\frac{d P}{d t}=k(M-P)
$$

where k is a positive constant, is a reasonable model for learning.
(c) Make a rough sketch of a possible solution of this differential equation. How does this graph compare to the one that you drew in (a)?
(5) Consider the differential equation $y^{\prime}=-y^{2}$.
(a) What can you say about a solution of the equation just by looking at the differential equation?
(b) Verify that all members of the family $y=1 /(x+C)$ are solutions of the equation in part (a).
(c) Can you think of a solution of the differential equation $y^{\prime}=-y^{2}$ that is not a member of the family in part (b).
d. Find a solution of the initial-value problem

$$
y^{\prime}=-y^{2} ; y(0)=0.5
$$

